

International Commission on Illumination Commission Internationale de l'Eclairage Internationale Beleuchtungskommission

Drawing Causal Inferences in Applied Lighting Research: Threats to Validity

Jennifer A. Veitch, Ph.D.

Director, CIE Division 3 – Interior Environment & Lighting Design Principal Research Officer, National Research Council of Canada

CIE Expert Tutorial & Workshop on Research Methods for Human Factors in Lighting Copenhagen, Denmark August 2018

CIE Central Bureau Babenbergerstraße 9/9A, 1010 Vienna, Austria Phone: +43 1 714 31 87 E-Mail: <u>ciecb@cie.co.at</u>

Definitions

- Scientific research is a systematic, controlled, empirical, and critical investigation of hypothetical propositions about the presumed relations among natural phenomena.
 What happens to Y when X changes?
- Hypothesis: a tentative proposition about the relation between two or more phenomena or variables.
 X causes Y.

(Above credit to F. N. Kerlinger)

- Inductive inference:
 - Causes covary with effects
 - Causes precede effects
 - Spurious causes can be eliminated

More Definitions

- *Construct*: a concept which is invented or adopted for a special scientific purpose, e.g., "brightness."
- *Operational definition*: assigns meaning to a construct or a variable by specifying the operations necessary to measure it.

(Above credit to F. N. Kerlinger)

• Examples?

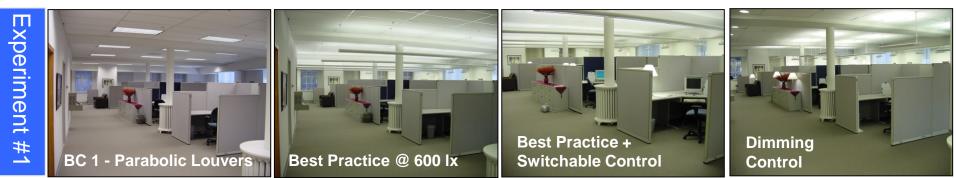
Research Designs

- True experiments
 - Laboratory experiments
 - Maximal experimenter control over:
 - manipulated independent variables
 - elimination of unwanted variability
 - participant characteristics
 - Limited contextual richness
 - Field experiments
- Correlational investigations:
 - Observations
 - Surveys

Laboratory Experiments

- Two common research designs
 - Within-subjects everyone experiences all experimental conditions
 - Between- subjects participants randomly assigned to one experimental condition

Demonstration: The Law of Large Numbers


Research Design Decisions

- How will my investigation eliminate alternative explanations?
 - internal validity [Fotios too]
 - construct validity [Fotios too]
 - statistical conclusion validity [Uttley]
- To what people, settings, or times do I want to apply the results, and how far may I take this?
 - external validity

Internal Validity

- Test falsifiable hypotheses
 - Comparison group!
- Eliminate alternative hypotheses
- Eliminate sources of bias, including...
 - Participant expectations
 - Experimenter expectations
 - Participant selection (non-random group assignment)
 - Differential attrition
 - Testing (learning, fatigue, familiarity...)

Boyce, P. R., Veitch, J. A., Newsham, G. R., Jones, C. C., Heerwagen, J. H., Myer, M., et al. (2006). Lighting quality and office work: Two field simulation experiments. *Lighting Research and Technology*, 38(3), 191-223.

Construct Validity of Causes

- Confounding
 - When more than one variable changes at a time
- Inadequate specification of conditions
 - See Day 1 presentations!
- Arbitrary choice of conditions
 - Refer back to the theory you want to test
 - Include levels that provide a meaningful comparison
 - Consider including extremes for which you have knowledge

Construct Validity of Outcomes

- Specify measurement operations
 - If a validated measurement of Y exists, use it!
- Multiple measures avoid mono-method bias
- Assess validity & reliability of measurement tools

External Validity

- Generalizability
- Random selection from population
- Sample representativeness, preferably not just :
 - WEIRD: White, Educated, Industrialized, Rich, and Democratic. 99% of all published studies rely on participants recruited from populations that fit those criteria.
- Setting representativeness

CIE Expert Tutorial & Workshop on Research Methods for Human Factors in Lighting

Conclusions and Discussion

- Research design is a creative and balancing act
- There are few right and wrong answers mostly trade-offs

• Discussion and thoughts...

Classic Resources

- Cook, T. D., & Campbell, D. T. (Eds.). (1979). Quasiexperimentation: Design and analysis for field settings. Boston, MA: Houghton Mifflin.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.
- Kerlinger, F. N., & Lee, H. B. (2000). *Foundations of behavioral research* (4th ed.). Fort Worth, TX: Harcourt College.
- Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). *Measurement theory for the behavioral sciences*. San Francisco, CA: W. H. Freeman.

Jennifer A. Veitch, Ph.D.

Principal Research Officer, Construction

National Research Council of Canada

1200 Montreal Rd

Ottawa ON K1A 0R6

Jennifer.veitch@nrc-cnrc.gc.ca j a veitch@jdarchitect.ca